\qquad
Instructions: Create at least 5 real-life problems that can be modeled with an ALGEBRAIC equation or formula. Then explain how the equation or formula models the problem. Lastly, solve the equation clearly labeling and explaining what your answer means.

1) Create, write and solve a real-life problem that can modeled by a 1 step ALGEBRAIC equation in the form of: $y=A x$, with A and y as known values.
2) Create, write and solve a real-life problem that can modeled by a 1 step ALGEBRAIC equation in the form of:
$y=x \pm B$, with B and y as known values.
3) Create, write and solve a real-life problem that can modeled by a 2 step ALGEBRAIC equation in the form of: $y=C x+D$, with C, D and y as known values.
4) Create, write and solve a real-life problem that can modeled by a 2 step ALGEBRAIC equation in the form of: $y=E x+F$, with E, F and y as known values, one of which must be NEGATIVE.
5) Create, write and solve a real-life problem that can modeled by a 3 step ALGEBRAIC equation in the form of: $G x+H=J x+K$, with G, H, J and K as known values, one of which must be NEGATIVE.

Name:
Class:
Self-Assessment:
Teacher-Assessment:
Checked Boxes: $1=\mathrm{D}-, 2=\mathrm{D}, 3=\mathrm{D}+, 4-5=\mathrm{C}-, 6=\mathrm{C}, 7=\mathrm{C}+, 8=\mathrm{B}-, 9=\mathrm{B}, 10=\mathrm{B}+, 11-12=\mathrm{A}-13=\mathrm{A}, 14=\mathrm{A}+$

Examples:

1) While Mr. Klee was shopping for batteries, he had the choice of buying a 20 pack of Rayovac batteries for $\$ 10.99$. What is the price per battery?

Batteries \times Price per Battery $=$ Total Price

$$
\begin{aligned}
b \cdot p & =t \\
20 \cdot p & =10.99 \\
p & =0.55, \text { the price is } \$ 0.55 \text { per battery }
\end{aligned}
$$

2) I need to shower each day. It takes 5 minutes. I have to leave in 20 minutes. How much time extra will I have?

$$
\begin{aligned}
\text { Total Time } & =\text { Shower Time }+ \text { Extra Time } \\
T & =S+E \\
20 & =5+E \\
15 & =E, \text { I would have } 15 \text { extra minutes }
\end{aligned}
$$

3) When Mr. Klee was in high school he was able to easily run a lap around the track at an average of 1 minute and 30 seconds. If Mr. Klee has already run for 6 minutes and wants to run for a total of 20 minutes, how many more laps would he need to run?

$$
\begin{aligned}
\text { Total Time } & =(\text { Average Lap Time }) \cdot(\text { Laps })+\text { Time Already Run } \\
T & =A \cdot L+R \\
20 & =1.5 L+6 \\
14 & =1.5 L \\
9.33 & =L, \text { Mr. Klee would have to run } 9.33 \text { more laps }
\end{aligned}
$$

4) You owe $\$ 5,000$ for a car and make interest free payments of $\$ 200$ per month. How many months before you would only owe $\$ 2,000$ for the car?

Remaining Amount Owed $=$ Total Owed $-($ Payment per Month) $\cdot($ Months $)$

$$
\begin{aligned}
R & =T-P \cdot M \\
2000 & =5000-200 \cdot M \\
-3000 & =-200 \cdot M \\
15 & =M, \text { the car would be paid down to } \$ 2,000 \text { in } 15 \text { months }
\end{aligned}
$$

5) You have to make 2 payments per month on a car and a truck. $\$ 5,000$ is owed on the car and you make interest free payments of $\$ 200$ per month. $\$ 4,000$ is owed on the truck and you make interest free payments of $\$ 175$ per month. How many months before the amount owed on each vehicle is the same?

$$
\begin{aligned}
\text { Car Owed }-(\text { Payment })(\text { Months }) & =\text { Truck Owed }-(\text { Payment })(\text { Months) } \\
C-P \cdot M & =T-P \cdot M \\
5000-200 \cdot M & =4000-175 \cdot M \\
5000 & =4000+25 \cdot M \\
1000 & =25 \cdot M \\
40 & =M \text {, the amount owed on both vehicles will be equal after } 40 \text { months }
\end{aligned}
$$

