Name:
Class: \qquad Self-Assessment: Teacher-Assessment: Checked Boxes: $1=\mathrm{D}-, 2=\mathrm{D}, 3=\mathrm{D}+, 4-5=\mathrm{C}-, 6=\mathrm{C}, 7=\mathrm{C}+, 8=\mathrm{B}-, 9=\mathrm{B}, 10=\mathrm{B}+, 11-12=\mathrm{A}-13=\mathrm{A}, 14=\mathrm{A}+$

Assignment Learning Target		Geometric Transformations (Chap 7 Alternative Assessment)
Success Criteria	Create, identify and describe geometric transformations. composition of the image; 3) describe the geometric transformation in terms of coordinates; 4) turn-in this rubric, a paper copy \& e-mail the digital file to bklee@ccs.coloma.org.	
Self	Teacher	You must accurately assess yourself within 1 box of your actual grade or you will lose1 box. EC for showing all the measurements in the digital file.
		4 or A+ (mastery)
	4.4 (+3.4) A FORMULA is written in terms of (x, y) that can be used to map any coordinate of the PRE-IMAGE onto the COMPOSED IMAGE.	
	4.3 (+3.3) A FORMULA is written in terms of (x, y) away from the CENTER OF ROTATIOIN that can be used to map any coordinate of the PRE-IMAGE onto the ROTATED IMAGE.	
	4.2 (+3.2) A FORMULA is written in terms of (x, y) that can be used to map any coordinate of the PRE-IMAGE across the LINE OF REFLECTION onto the REFLECTED IMAGE.	
	4.1 (+3.1) A FORMULA is written in terms of (x, y) that can be used to map any coordinate of the PRE-IMAGE onto the TRANSLATED IMAGE.	
	$\mathbf{3}$ or B+ (advanced proficiency)	

Assignment		Geometric Transformations (Chap 7 Alternative Assessment)
Learning Target		Create, identify and describe geometric transformations.
Success Criteria		Students will use software such as Paint, PowerPoint, Word, etc. to 1) create a unique pre-image; 2) create 4 transformations: translation, reflection, rotation \& composition of the image; 3) describe the geometric transformation in terms of coordinates; 4) turn-in this rubric, a paper copy \& e-mail the digital file to bklee@ccs.coloma.org.
00000000000000000	G.CO. 2	Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).
	G.CO. 3	Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.
	G.CO. 4	Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.
	G.CO. 5	Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.
	N.VM. 2	Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.

Additional Resources:

Your GEOMETRY Book!

My website: http://mrbrianklee.weebly.com/geometry.html
Which contains links to all of the following:
Video explaining TRANSFORMATIONS: https://www.youtube.com/watch?v=r3lN_BADmPQ
Video for using PAINT: https://www.youtube.com/watch?v=QjRi0Mq3G2g
Video for using WORD: https://www.youtube.com/watch?v=tJVTv_QcpaA
Video for using POWER POINT: https://www.youtube.com/watch?v=rOD7SXFkv9Q

