\qquad

Instructions - This can potentially be counted as your Chapter 3 Test Grade (you would still have to take the 9 problem Chapter 3 SAT/ACT Post-Test)

Please note the examples from the "Linear Programming Activity". Develop a real-life or possible real-life problem that requires linear programming to solve. Then solve for the objective function and provide a detailed written summary of your solutions.

Requirements:
__ An objective function
_ At least 3 constraints
_ At least 1 constraint must be in standard linear form with 2 variables
__ Graph of the feasible region
__ Algebraic reasoning showing the minimum and maximums of the objective function
_ Written explanations of what the minimums and maximums mean in terms of solving the real-life problem

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF. 1
Learning Targets Assessed: Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.
\qquad
Name:
Class:
Self-Assessment:
Teacher-Assessment:
Checked Boxes: $1=\mathrm{D}-, 2=\mathrm{D}, 3=\mathrm{D}+, 4-5=\mathrm{C}-, 6=\mathrm{C}, 7=\mathrm{C}+, 8=\mathrm{B}-, 9=\mathrm{B}, 10=\mathrm{B}+, 11-12=\mathrm{A}-13=\mathrm{A}, 14=\mathrm{A}+$

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF. 1
Learning Targets Assessed: Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.
\qquad

Mr. Klee's Example Problem:
Mr. Klee decides to run a Geometry and Algebra 2 tutoring service by paying his students $\$ 8$ an hour to provide Geometry tutoring and $\$ 10$ an hour to provide Algebra 2 tutoring with a total weekly budget of $\$ 5,000$ or less. Due to limited class time only up to 550 hours of tutoring for either Geometry or Algebra 2 can be provided each week. Additionally, since only some students are in Algebra 2, no more than 180 hours of Algebra 2 tutoring can be provided. Finally, the profit from each hour of Geometry tutoring is $\$ 15$ and the profit from each hour of Algebra 2 is $\$ 10$. What possible combination of hours of Geometry and Algebra 2 tutoring will lead to the maximum profit?

Constraints:

let $\boldsymbol{x}=$ hours of Geometry tutoring and $\boldsymbol{y}=$ hours of Algebra 2 tutoring
$\mathbf{8 x} \mathbf{+ 1 0 y} \leq \mathbf{5 0 0 0}$, This equation shows that the $\$ 8$ costs to pay students to provide Geometry tutoring and $\$ 10$ costs to pay students to provide Algebra 2 tutoring must be under \$5,000
$\boldsymbol{x}+\boldsymbol{y} \leq 550$, This equation shows the hours of Geometry tutoring and the hours of Algebra 2 tutoring added together must be only up to 550 hours or less
$\boldsymbol{y} \leq \mathbf{1 8 0}$, This equation shows the hours of Algebra 2 tutoring must be under 180 hours.
Calculating Intercepts:

Cost constraints		Hour constraints	
$\mathbf{8 (0) + \mathbf { 1 0 y } = \mathbf { 5 0 0 0 }}$	$\mathbf{8 x}+\mathbf{1 0}(\mathbf{0})=\mathbf{5 0 0 0}$	$(0)+\boldsymbol{y}=\mathbf{5 5 0}$	$\boldsymbol{x}+(\mathbf{0})=\mathbf{5 5 0}$
$\mathbf{1 0 y}=\mathbf{5 0 0 0}$	$\mathbf{8 x}=\mathbf{5 0 0 0}$	$\boldsymbol{y}=\mathbf{5 5 0}$	$\boldsymbol{x}=\mathbf{5 3 0}$
$\boldsymbol{y}=\mathbf{5 0 0}$	so plot $(0,550)$	so plot $(550,0)$	
so plot $(0,500)$	so plot $(625,0)$		

Slope-Intercept (this is just a different way to be able to get the graphs):

Cost constraints	Hour constraints
$8 x+10 y \leq 5000$	$x+y \leq 550$
$10 y \leq 5000-8 x$	$y \leq 550-x$ or $y \leq-x+550$
$y \leq 500-0.8 x$ or $y \leq-0.8 x+500$	

Algebraic Reasoning for other Intersection Points:

Costs \& Hours Constraints	Costs \& 180 Constraints	Hours \& 180 Constraints
$x+y=550$ equivalent to $y=550-x$ So substitute into... $\begin{aligned} 8 x+10 y=5000 & \text { to get } \ldots \\ 8 x+10(550-x) & =5000 \\ 8 x+5500-10 x & =5000 \\ -2 x & =-500 \\ x & =\mathbf{2 5 0} \end{aligned}$ And substitute back into $y=550-\boldsymbol{x}$ To get that $\boldsymbol{y}=\mathbf{5 5 0} \mathbf{- 2 5 0}=\mathbf{3 0 0}$ So plot (250, 300)	Substitute $y=180$ into... $x+y=550$ to get... $\begin{aligned} x+180 & =550 \\ x & =370 \end{aligned}$ So plot (370, 180)	Substitute $y=180$ into... $8 x+10 y=5000$ to get... $\begin{aligned} 8 x+10(180) & =5000 \\ 8 x+1800 & =5000 \\ 8 x & =\mathbf{3 2 0 0} \\ x & =\mathbf{4 0 0} \end{aligned}$ So plot (400, 180)

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF. 1
Learning Targets Assessed: Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.
\qquad

Feasible Region:

Evaluating the Objective/Profit Function:

The profit function would be $P=15 x+10 y$ because a single hour of Geometry tutoring will earn a profit of $\$ 15$ and a single hour of Algebra 2 tutoring will earn a profit of $\$ 15$. So substitute and evaluate for the vertices of $(180,0),(370,180)$ and $(550,0)$ that are on the intersection of the constraints of the feasible region.
$P=15(0)+10(180)=\$ 1800$ profit for 0 hours of Geometry and 180 hours of Algebra 2 tutoring
$P=15(370)+10(180)=\$ 7350$ profit for 370 hours of Geometry and 180 hours of Algebra 2 tutoring
$P=15(550)+10(0)=\$ 8250$ profit for 550 hours of Geometry and 0 hours of Algebra 2 tutoring
Solution:
After evaluating the objective/profit function for each of the vertices, it is clear that using all 550 hours to provide Geometry tutoring and 0 hours to provide Algebra 2 tutoring, the maximum profit would be $\$ 8,250$.

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF. 1
Learning Targets Assessed: Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.

