Instructions – This can potentially be counted as your Chapter 3 Test Grade (you would still have to take the 9 problem Chapter 3 SAT/ACT Post-Test)

Please note the examples from the "Linear Programming Activity". Develop a real-life or possible real-life problem that requires linear programming to solve. Then solve for the objective function and provide a detailed written summary of your solutions.

Requirements:

- ___ An objective function
- ___ At least 3 constraints
- ____ At least 1 constraint must be in standard linear form with 2 variables
- __ Graph of the feasible region
- ____ Algebraic reasoning showing the minimum and maximums of the objective function
- ___ Written explanations of what the minimums and maximums mean in terms of solving the real-life problem

Name: _____

Name:	Class:	Self-Assessment:	_ Teacher-Assessment:
Checked Boxes: 1 = D-, 2 = I	D, 3 = D+, 4-5 =	- C-, 6 = C, 7 = C+, 8 = B-, 9	= B, 10 = B+, 11-12 = A-, 13 = A, 14 = A+

Accianment	Linear Dragromming Extension (Chapter 2 Test Alternative Assessment due 12/15 @ 1.46)				
Assignment	Linear Programming Extension (Chapter 3 Test Alternative Assessment due 12/15 @ 1:46)				
Learning Target	 Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints. Students will use software such as <i>Word</i>, <i>Power Point</i>, <i>etc.</i> to 1) create, type and solve a real-life problem using linear programming methods including graphical and algebraic solutions; 2) turn-in this rubric, a paper copy & e-mail the digital file to <u>bklee@ccs.coloma.org</u>. 				
Success Criteria					
Self Teacher	You must assess yourself or you will lose 1 checked box. You must assess yourself accurately within 1 checked box or will lose 1 checked box.				
4 or A+ (mast	ery)				
	4.4 All of the problems AND solutions are typed, in a single digital file and a copy is e-mailed to bklee@ccs.coloma.org .				
	4.3 All of the problems AND solutions are typed and a copy is turned in.				
	4.2 (+3.3 and 3.4) A written explanation of what each possible solution in the objective function shows in context of the real-life problem.				
	4.1 (+3.1) A written explanation of what each intersection on the graph shows in context of the real-life problem.				
3 or B+ (adva	nced proficiency)				
	3.4 The solution to the real-life problem is provided with appropriate reasoning.				
	3.3 The objective function is clearly evaluated for all possible values.				
	3.2 Algebraic reasoning such as substitution or elimination methods is used to confirm any approximated intersections.				
	3.1 (+2.1 and 2.3) The feasible region is graphed showing all the constraints (this can be done either by hand or by using software such as DESMOS).				
2 or C (basic	proficiency)				
	2.4 (+2.2) Algebraic reasoning shows how to graph any constraints written in standard form (either zeros are used to find the <i>x</i> -intercept and <i>y</i> -intercept or the equation is re-written in slope-intercept form $y = mx + b$).				
	2.3 An objective function is written and clearly explained				
	2.2 At least 1 of the constraints is written and represented as an inequality in standard form $Ax + By \le C$ or $Ax + By \ge C$				
	2.1 At least 2 unique constraints in addition to $x \le 0$ and to $y \le 0$ are written and represented as linear inequalities				
1 or D (some	basic problems with minimal help)				
	A problem is created with an objective function, constraints and some correct solutions				
0.5 or D- (sor	ne basic problems with considerable help)				
	A problem is created that would require linear programming to solve and solutions are given				
0 or E (displa	ys no ability or understanding)				

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF.1 **Learning Targets Assessed:** Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.

Mr. Klee's Example Problem:

Mr. Klee decides to run a Geometry and Algebra 2 tutoring service by paying his students \$8 an hour to provide Geometry tutoring and \$10 an hour to provide Algebra 2 tutoring with a total weekly budget of \$5,000 or less. Due to limited class time only up to 550 hours of tutoring for either Geometry or Algebra 2 can be provided each week. Additionally, since only some students are in Algebra 2, no more than 180 hours of Algebra 2 tutoring can be provided. Finally, the profit from each hour of Geometry tutoring is \$15 and the profit from each hour of Algebra 2 is \$10. What possible combination of hours of Geometry and Algebra 2 tutoring will lead to the maximum profit?

Constraints:

let x = hours of Geometry tutoring and y = hours of Algebra 2 tutoring

 $8x + 10y \le 5000$, This equation shows that the \$8 costs to pay students to provide Geometry tutoring and \$10 costs to pay students to provide Algebra 2 tutoring must be under \$5,000

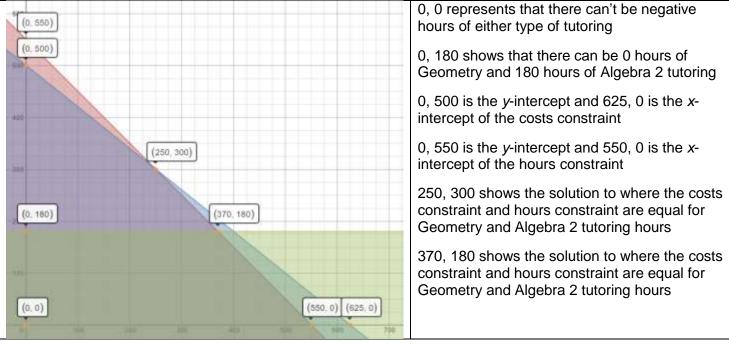
 $x + y \le 550$, This equation shows the hours of Geometry tutoring and the hours of Algebra 2 tutoring added together must be only up to 550 hours or less

 $y \leq 180$, This equation shows the hours of Algebra 2 tutoring must be under 180 hours.

Calculating Intercepts:

Cost co	nstraints	Hour constraints		
	8x + 10(0) = 5000 8x = 5000 x = 625	(0) + y = 550 y = 550	x + (0) = 550 x = 530	
so plot (0, 500)	so plot (625, 0)	so plot (0, 550)	so plot (550, 0)	

Slope-Intercept (this is just a different way to be able to get the graphs):


Cost constraints	Hour constraints
$8x + 10y \le 5000$ $10y \le 5000 - 8x$ $y \le 500 - 0.8x \text{ or } y \le -0.8x + 500$	$ \begin{array}{l} x + y \leq 550 \\ y \leq 550 - x \text{ or } y \leq -x + 550 \end{array} $

Algebraic Reasoning for other Intersection Points:

Costs & Hours Constraints	Costs & 180 Constraints	Hours & 180 Constraints
x + y = 550 equivalent to $y = 550 - x$	Substitute $y = 180$ into	Substitute $y = 180$ into
So substitute into	x + y = 550 to get	8x + 10y = 5000 to get
8x + 10y = 5000 to get	x + 180 = 550	8x + 10(180) = 5000
8x + 10(550 - x) = 5000	x = 370	8x + 1800 = 5000
8x + 5500 - 10x = 5000		8x = 3200
-2x = -500	So plot (370, 180)	x = 400
x = 250 And substitute back into $y = 550 - x$ To get that $y = 550 - 250 = 300$		So plot (400, 180)
So plot (250, 300)		

CCSS Assessed: N-Q.1,2,3, A.CED.1,2,3, A.REI.3,5,6,10,11,12, F-IF.1,2,4,5,7, F-BF.1 **Learning Targets Assessed:** Understand linear programming is a process of using systems of linear inequalities to model the possible solutions for given constraints.

Name: ____

Feasible Region:

Evaluating the Objective/Profit Function:

The profit function would be P = 15x + 10y because a single hour of Geometry tutoring will earn a profit of \$15 and a single hour of Algebra 2 tutoring will earn a profit of \$15. So substitute and evaluate for the vertices of (180, 0), (370, 180) and (550, 0) that are on the intersection of the constraints of the feasible region.

P = 15(0) + 10(180) =\$1800 profit for 0 hours of Geometry and 180 hours of Algebra 2 tutoring

P = 15(370) + 10(180) = \$7350 profit for 370 hours of Geometry and 180 hours of Algebra 2 tutoring

P = 15(550) + 10(0) =\$8250 profit for 550 hours of Geometry and 0 hours of Algebra 2 tutoring

Solution:

After evaluating the objective/profit function for each of the vertices, it is clear that using all 550 hours to provide Geometry tutoring and 0 hours to provide Algebra 2 tutoring, the maximum profit would be \$8,250.