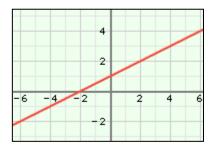
Name:


Date:

Student Exploration: Quadratic Inequalities

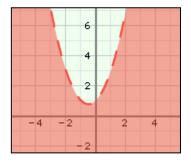
Vocabulary: boundary, inequality, solution

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) An **inequality** compares two quantities or expressions that are not equal. A **solution** to an inequality makes it true.

1. The graph of y = 0.5x + 1 is shown to the right. Suppose y = 0.5x + 1 is changed to the inequality y < 0.5x + 1. Substitute 1 for x and 0 for y to see if (1, 0) makes y < 0.5x + 1 true. Show your work in the space below.

Does (1, 0) make *y* < 0.5*x* + 1 true?

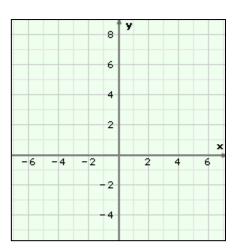
2. Plot (1, 0) on the graph. Where does (1, 0) lie in relationship to the graph of y = 0.5x + 1?


Gizmo Warm-up

When you graph a quadratic inequality like $y < x^2 + x + 1$, the
boundary (graph of the related quadratic equation) will be a
parabola instead of a line. In the Quadratic Inequalities Gizmo™,
you will graph quadratic inequalities to find their solutions.

With a , b , and c set to 1.0, select $=$ to graph $y = x^2 + x + 1$.
(Change the values of a, b, and c by dragging the sliders, or by
clicking in the text field, typing in a value, and hitting Enter.)

- Select S. How does the graph change?
- 2. Select 🚬 How does the graph change?
- 3. Why is the shaded part of the graph below the parabola when \leq is selected, and above the


parabola when ≥ is selected? _____

Activity A: Solutions of quadratic inequalities	<u>Get the Gizmo ready</u> : • Set <i>a</i> to 1.0, <i>b</i> to 0.0, and <i>c</i> to 0.0. • Select ≥.	4 2 2	6
--	---	-------	---

- 1. The graph shown in the Gizmo should be of $y > x^2$. Sketch the graph of $y > x^2$ on the grid to the right.
 - A. Plot the points (1, 5) and (4, 7) on the graph.
 - B. Substitute 1 for x and 5 for y to see if (1, 5) makes $y > x^2$ true. Show your work below.

Does (1, 5) make *y* > *x*² true?

C. Substitute 4 for x and 7 for y to see if (4, 7) makes $y > x^2$ true. Show your work to the right.

Does (4, 7) make $y > x^2$ true?

2. With $y > x^2$ still graphed, select **Show solution test**. Drag the blue point to three places in the shaded area and three places outside the shaded area. Record the coordinates of each point and the values of *y* and x^2 in the tables below.

Points in the shaded area		
Coordinates	у	X ²

Points outside the shaded area			
Coordinates	у	X ²	

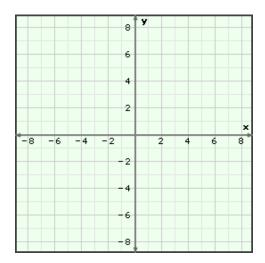
A. What is true about y and x^2 for each point in the shaded area?

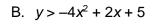
- B. What is true about y and x^2 for each point outside the shaded area?
- C. What does the shaded area represent?

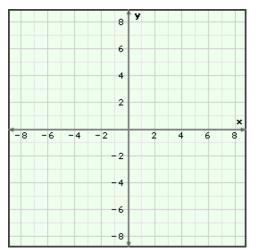
(Activity A continued on next page)

Activity A (continued from previous page)

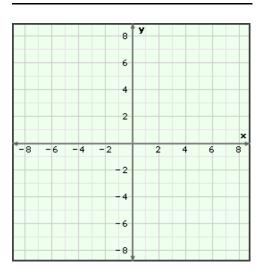
. With	$y > x^2$ still graphed and Show solution test selected, drag the blue point to (2, 4).
Þ	A. Is (2, 4) a solution to $y > x^2$? Explain
E	3. Select \ge . Is (2, 4) a solution to $y \ge x^2$? Explain
(C. Select \leq Is (2, 4) a solution to $y \le x^2$?
٢	D. Select \leq Is (2, 4) a solution to $y < x^2$?
E	. When do you use a solid boundary?
F	. When do you use a dashed boundary?
C	G. How do you know when to shade below the boundary?
Cons	sider the graph of $y < -3x^2 - x + 1$.
A	A. What is the equation of the boundary of the inequality?
E	Will the boundary be solid or dashed?
C	C. Which side of the boundary do you think will be shaded?
	Check your answer in the Gizmo

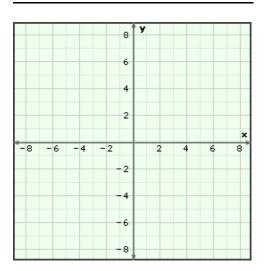

5. Determine if each (x, y) point given below is a solution to the inequality $y \ge 2x^2 + x - 2$. Show your work in the space below each problem. Then check your answers in the Gizmo.


A. (1, 6) B. (-4, -2)



Activity B: Using quadratic inequalitiesGet the Gizmo ready: • Be sure Show solution test is turned on.			4
Using quadratic	Activity B:	Get the Gizmo ready:	2
inequalities	• •		
			-2 2 4


- 1. Graph the following inequalities on the grids below. Then check your graphs in the Gizmo.
 - A. $y \le x^2 + 4x 3$



- 2. For each item, write an inequality that contains the given point(s) in its solution and has the given boundary. Then graph the inequalities, and check your answers in the Gizmo.
 - A. The point (0, 4) and all points on the boundary $y = x^2 2x + 1$.

B. The point (-3, 2) and no points on the boundary $y = x^2 - 4x - 3$.

